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Executive Summary

Advances in computing are transforming nearly all areas of science and engineering. In
turn, the pursuit of new discoveries has resulted in innovations across all areas of
computing. We are now facing the limits of our ability to gain insight from the volume,
variety, and velocity of available data, posing fundamental challenges that can only be
addressed through symbiotic advances in computing. Our ability to understand and gain
insight from data of unprecedented complexity could be greatly increased with appropriate
intelligent assistance and automation.

The Workshop on Discovery Informatics was convened to articulate the research
challenges concerned with the management of knowledge and of the complex processes
involved in scientific discovery. Workshop participants identified an expansive range of
fundamental research challenges for information and intelligent systems brought into focus
around three themes:

1. New computational approaches are needed to manage the complexity of discovery
processes that surpass human cognitive abilities. This complexity often hampers
scientists’ knowledge and ability to analyze the large amounts of data at their
disposal. We have reached a point where cognitive limitations are constraining
scientific progress. We need to make scientific processes easily inspectable and
reproducible. Innovations are needed to augment human abilities to analyze
complex data through sophisticated processes, and enable understanding and
insight.

2. New computational approaches are needed to increase the connections between
knowledge and data and exploit them to facilitate scientists’ understanding of complex
phenomena. Data leads to new scientific knowledge, but the connection between
knowledge and data is often not explicitly preserved in existing computational
frameworks. As more complex data becomes available with increasing volume,
variety, and velocity, the exploration of models becomes unmanageable, hurting our
ability to do science effectively. We must develop general mechanisms for
automated data-driven model refinement, data collection guided by models, and
model-driven data analysis.

3. New computational approaches are
needed to flexibly combine diverse human
abilities to tackle science problems that
may not be otherwise considered possible.

Major themes in Discovery Informatics
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Existing relevant research efforts are scattered across disciplines and lack the critical
mass needed to make a significant impact on these challenging aspects of science. Advances
in these areas will transform the practice of science in two ways: 1) improving existing
discovery processes that are unmanageable and suffer from human cognitive limitations,
and 2) developing new discovery processes that increase our ability to understand
challenging scientific phenomena. Further, outcomes in these areas are not domain specific,
and can be leveraged across different science and engineering disciplines, having
multiplicative returns, avoiding the inefficient, redundant development of computing
innovations that would otherwise be repeated in specific disciplines (e.g., bio-, geo-, eco-
informatics).

Discovery Informatics focuses on computing advances aimed at identifying
scientific discovery processes that require knowledge assimilation and reasoning,
and applying principles of intelligent computing and information systems in order to
understand, automate, improve, and innovate any aspects of those processes. A new
initiative in Discovery Informatics would enable and catalyze the transformational
innovations needed to have a broad impact on the improvement and innovation of scientific
discovery processes.

Discovery Informatics would require advancing basic research in many areas of
computing, including: information extraction and text understanding to process
publications and lab notebooks; synthesis of models from first principles, hypotheses, or
data analysis; dynamic and adaptive design of data analysis methods; design, execution, and
steering of experiments; selective data collection; data and model visualization; theory and
model revision; collaborative activities that improve data understanding and synthesis;
intelligent interfaces for scientists; design of new processes for scientific discovery; and
computational mechanisms to represent and communicate scientific knowledge to
colleagues, researchers in other disciplines, students, and the public.

Discovery Informatics will accelerate 21st century science and will have outcomes vital
to the nation in numerous ways. National security is in severe need of better technologies
for data analysis, noticing the unusual, and discovering patterns. Personal health and
preventive medicine depend on our ability to enable people to contribute to the scientific
enterprise in meaningful ways, by contributing data, analysis, personal histories, and sensor
data. Our future relies on a better understanding of environmental and sustainability factors
that is well beyond our current abilities. Our national competitiveness will be significantly
boosted by a significant push in our nation’s capabilities as a knowledge economy that
would result from a renewed strength in Discovery Informatics. Discovery Informatics will
advance the frontiers of computing, particularly in emerging areas of information and
intelligent systems, while enabling new discoveries and innovations in all areas of science
and engineering.

Participants stressed the need to act immediately. There is no doubt that our ability to
generate and share data has surpassed our ability to analyze it. There is no doubt that there
is data available or ready to be collected that could lead to many great discoveries of
societal importance. We should strive to be in a position where not only can we harness the
vast amounts of data at our disposal, but we are also able to pose increasingly complex
questions that current methods do not even allow us to begin to imagine.



1 Introduction
Written by Yolanda Gil and Haym Hirsh

Computing has been a crucial enabling force for science in recent decades, creating in
turn numerous opportunities for fundamental research in computer science. Ongoing
investments in cyberinfrastructure have a tremendous impact on scientific discoveries
[ACCI 2011]. Cyberinfrastructure today provides important capabilities such as high-
performance computing, distributed services, shared high-end instruments, data
management services, and support for virtual organizations. These investments have
radically changed many sciences, and opened new doors to discovery and innovation.

However, scientists in all disciplines openly acknowledge their inability to exploit all the
data and information that is already available to them and that continues to expand so
rapidly (e.g., [Science 2011]). The volume, variety, and velocity of the data already available
across all areas of science and engineering are already surpassing existing analytic
capabilities to understand complex phenomena. Three hallmarks of 21st century science
highlight major challenges for discovery:

1. Discovery processes are increasingly complex. This complexity results from
having to integrate diverse data, software, expertise, results, etc. Literature search
to synthesize what is known is one example of an increasingly unmanageable
process given the ever-increasing size of the published record. Data analysis is
another example, where complexity often hampers scientists’ knowledge and ability
to analyze the large amounts of data at their disposal. Unfortunately, many
discovery processes are still largely human-driven activities. We have reached a
point where cognitive limitations are constraining scientific progress. New
computational approaches are needed to manage the complexity of discovery
processes that surpass human cognitive abilities.

2. Tight connections between knowledge and data are central to discovery
processes around complex phenomena. Data leads to new scientific knowledge,
but the connection between knowledge and data is often not explicitly preserved in
existing computational frameworks. This scientific knowledge is captured in a
variety of forms: publications, influence networks, taxonomies, Bayesian models,
etc. Keeping knowledge and data separate makes it harder for scientists to keep
track of what hypotheses have been considered, what data supports them, what
models have been created from the data, and how new hypotheses are formulated
from those models. As more complex data becomes available with increasing
volume, variety, and velocity, the exploration of models becomes unmanageable.
New computational approaches are needed to increase the connections between
knowledge and data and exploit them to facilitate scientists’ understanding of complex
phenomena.

3. Innovative social processes can enable new discoveries. New opportunities for
discovery lie in the amalgamation of human expertise and effort. Although
collaborations among scientists are common we currently lack the ability to
facilitate unplanned, cross-disciplinary collaborations. A researcher addressing a
complex scientific question in one field often only realizes the need for expertise in



another field during the course of the work. In addition, the public’s participation in
science makes it possible to have massive contributions of effort that result either in
precious data that would not otherwise be available or in valuable problem solving
that only humans can perform. New computational approaches are needed to flexibly
combine diverse human abilities to tackle science problems that may not be otherwise
considered possible.

A major research initiative focused on understanding and improving scientific discovery
processes would have a profound impact on all sciences, accelerating the pace of scientific
advances and innovation. Fundamentally new computational frameworks to address these
challenges would make those processes significantly more manageable, enabling scientists
to explore more complex phenomena than ever before. Those processes could also be made
more efficient, making scientists significantly more productive. Moreover, new processes
that do not exist today could be designed, enabling innovations to the scientific process that
open doors to new discoveries.

Although there is some existing relevant research, the work is scattered across several
disciplines and will not achieve the critical mass required to have a significant effect on
scientific discovery. In computer science, there is relevant work in information
management, intelligent interfaces, workflows, text extraction, visualization, machine
learning, theory formation, collaborative systems, and social computing. There is also
relevant work in the social sciences to understand the processes of scientific discovery,
innovation, and collaboration. Researchers with common goals and complementary
expertise are separated by disciplinary boundaries. Moreover, in the domain sciences these
topics are addressed in a variety of informatics groups: bioinformatics, geoinformatics,
ecoinformatics, astroinformatics, etc. As a result, advances have been piecemeal, with
limited impact.

A new initiative in Discovery Informatics could bring critical mass to the improvement
and innovation of scientific discovery processes. Discovery Informatics focuses on
computing advances aimed at identifying scientific discovery processes that require
knowledge assimilation and reasoning, and applying principles of intelligent
computing and information systems in order to understand, automate, improve, and
innovate any aspects of those processes. Discovery Informatics would encompass a
broad spectrum of basic research in areas such as information extraction and text
understanding to process publications and lab notebooks; synthesis of models from first
principles, hypotheses, or data analysis; knowledge representation and reasoning for all
forms of scientific knowledge; dynamic and adaptive design of data analysis methods;
design, execution, and steering of experiments; selective data collection; data and model
visualization; theory and model revision; collaborative activities that improve data
understanding and synthesis; intelligent interfaces for scientists; design of new processes
for scientific discovery; and computational mechanisms to represent and communicate
scientific knowledge to colleagues, researchers in other disciplines, students, and the public.

The NSF Discovery Informatics Workshop was convened to explore the core research
challenges for scientific discovery that concern information and intelligent systems. Many
disciplines were represented at the workshop, with many attendees doing work that
crosses disciplinary boundaries. Invited workshop participants included computer science
researchers from academia and industry, scientists in several areas of science, and social
scientists studying cognitive and social aspects of science. Major outcomes of the workshop
were identifying the importance of Discovery Informatics, outlining an initial agenda for
basic research in this area, and creating the seeds for a more cohesive community.
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Table 1. A research agenda for Discovery Informatics

Discovery Informatics Goals

Computing advances aimed at identifying scientific discovery processes that
require knowledge assimilation and reasoning, and applying principles of
intelligent computing and information systems in order to understand,
automate, improve, and innovate any aspects of those processes.

Key Challenges

Information extraction and text understanding

Model synthesis from first principles, hypothesis, and data analysis
Reasoning with all forms of scientific knowledge

Dynamic and adaptive design of data analysis methods
Experiment design, execution, and steering

Model-guided data collection

Data and model understanding leading to insight

Evolution of scientific models and theories

Collaborative synthesis of new knowledge

Meaningful participation of the public in science tasks

A XA AR A A RN 7

Areas of Basic Research

INFORMATION AND KNOWLEDGE

* Knowledge representation and reasoning

* Semantics and ontologies

* Data and information integration

* Model and theory revision

* Knowledge and information management
* Problem solving and constraint reasoning
* Process and workflow management

* Uncertainty reasoning

* Natural language processing INTERACTION

» Cognitive aspects of scientific discovery
* Intelligent user interfaces

* Human computer interaction

* Collaboration and communication

AUTONOMY * Visualization of models and data

* Integrated intelligence * Social computing

* Distributed intelligence * Innovation and creativity

* Model-driven learning * Tutoring and education frameworks

* Intelligent control
* Adaptive and robust intelligence
* Robotics
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Figure 1. Three major themes in Discovery Informatics

Table 1 summarizes the goals, associated challenges, and resulting research agenda for
Discovery Informatics. The rest of this reports describes in detail the rationale for these
challenges and research goals.

Three overarching themes were selected to discuss a research agenda for Discovery
Informatics at the workshop: 1) computational support of the discovery process; 2)
integration of data and models; 3) social computing for discovery. These three themes are
highlighted in Figure 1.

The rest of this report summarizes the discussions of workflow participants. The next
section provides an overview of motivating scenarios in a variety of domain sciences
contributed by the participants based on their work. These selected scenarios illustrate the
kinds of challenging science discovery questions that necessitate significant improvements
in the current state of the art. For each of the three broad research themes identified, we
discuss the science needs, the state of the art, and the challenging research questions in
computer science that need to be addressed. This report does not include exhaustive
literature reviews to present the state of the art; instead, we highlight success stories
contributed by the participants based on their own work. Next, we discuss general
observations that emerged during the various sessions of the workshop. We also present
the arguments put forward by the attendees regarding the urgency and timeliness of
addressing this research area. We include two position statements by two participants
reflecting on the workshop from their perspectives as experts in very different scientific
fields. We end with recommendations for pushing a significant effort in Discovery
Informatics that will inspire computer science researchers and will also benefit science
across all domains.

2 Motivating Scenarios

During the workshop, several scenarios were discussed that illustrate the many
opportunities for improving scientific discovery processes. Workshop participants work in
collaboration with scientists in many areas; therefore, these scenarios illustrate the breadth
and diversity of opportunities across scientific disciplines. This section presents three
representative scenarios from the fields of social sciences, geosciences, and biology.
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2.1 Education for better science, better citizens, and better communities
Written by Steven Sawyer and Susan Davidson

Despite decades of research, social scientists struggle to provide actionable guidance as
to the efficacy of particular education choices or the long-term effect of various educational
approaches. It is clear that more education is better than less, but what type of educational
system is best for a particular individual inhabiting a particular social structure? With the
rising cost of college education and decreasing federal and state funds available to offset
this cost, how can online learning be used effectively and learning outcomes validated so as
to be useful for potential employers?

Developing insight into these and other broad questions about education may now be
within reach. We have moved from an environment in which digital information about local
communities - e.g, quality indicators of schools, environmental information, local
governance regulations, economic facts - was sparse to an environment in which there is a
wealth of online information, in official forums as well as unofficial forums such as blogs.
Such information, while locally important, could be studied at a national level to understand
trends and correlations. Likewise, the data on educational approaches (such as curricular
models, student performance, and student-produced materials) is increasingly available in
digital form and could be collected, tagged, and used as a large-scale dataset for analysis and
discovery.

For this opportunity to be realized, many barriers must be overcome. For example, data
may be of poor quality, since it is often not curated or validated when entered, and may lack
meta-data on context or provenance. It may also be incomplete with respect to the new
questions that are being asked, which could be quite different from the ones anticipated
when the data was collected. Interrelated data may be segmented across different datasets,
and stored using incompatible formats and different terminologies. Relevant data may be in
text form (e.g., blogs or descriptions), and thus not easily queryable. Furthermore, privacy
and regulatory issues may arise when correlating data across datasets, or as a result of
storing provenance information.

Advances in Discovery Informatics could help in many respects. Volunteer contributors
could be guided through social computing platforms to contribute personal data and
experiences, leading to significant improvement and expansion of data availability. In
addition to the data, volunteers could be guided to contribute valuable meta-data and
provenance information that would allow the interpretation and integration of data from
multiple sources. Advanced models and analytic techniques need to be developed to exploit
the diversity and volume of relevant data. Collaboration frameworks are needed to enable
ad-hoc collaborations to integrate findings and analysis methods that are currently
segmented across different intellectual communities. Intelligent support for developing
models and understanding is needed, in frameworks that can be used not only by social
scientists but also by researchers in other disciplines and by decision makers.

2.2 Forensic Paleoclimatology
Written by Liz Bradley and Karsten Steinhaeuser

Paleoclimatology is currently stymied by data-analysis challenges that could be solved
with the assistance of scientific discovery tools. Cores, for instance, are used to sample
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glaciers, trees, caves, and sediments at the bottom of oceans and lakes, among other things.
There are vast archives of raw paleoclimate data lying around waiting for analysis. The
World Data Center for Paleoclimatology archive at NOAA, for instance, contains millimeter-
by-millimeter measurements of up to 13 variables in cores from 7,000 sites, some of which
are thousands of meters in length. Without computational assistance, needless to say, this is
not a humanly possible task.

The first step in analyzing the data contained in these archives is to create an age model:
a curve that relates the depth in the core to the age of the material at that point. Some cores
have discernible layers, but in many cases they have been obscured by intermixing, shifts,
or other geological activity. Where annual layers exist, one can deduce the core's timeline by
counting them. Where they do not, one must resort to forensic reasoning about the
processes that created the core, and that affected it between formation and collection, in
order to create the age model. This is not a trivial process; ocean sediment cores, for
instance, are “bioturbated” by marine organisms, or glacial folding near their bases. For
these reasons, deeper parts of the core may contain younger material. Worse yet, there are
very few gold-standard measures of time; 14C’s half-life is known, for example, and thus it
theoretically makes a good "clock.” However, its timescale is comparatively short and its
levels in the atmosphere have varied over that time span. Occasional broad-scale events,
such as volcanic eruptions and reversals of the Earth's magnetic field, can leave traces in
cores; outside of that, independent synchronization marks are rare. As a result, building
those models requires significant effort by a trained expert.

Advances in Discovery Informatics could provide new approaches to significantly
improve and automate the analysis of cores and other paleoclimate data. New approaches
are needed help automate labor-intensive tasks, enable new analyses, facilitate
collaborations, and improve dissemination of results and findings to a broader audience.
These approaches could likewise benefit other Earth science disciplines, including climate,
ecology, and environmental science, among others.

2.3 Mass Phenotyping
Written by Helena Deus, Larry Hunter, and Nigam Shah

The rise of high-throughput technologies and the drop in price of genome sequencing
have led to massive amounts of genotype information being produced and even managed
and freely shared by its owners.! One of the primary challenges in making sense of the
dramatic increase in human genotype data is finding suitable phenotype information for
correlational analyses. Surprisingly, one of the most popular uses of this data has been in
discovering long-lost relatives through phylogenetic analysis. Until recently, such
phenotype data was primarily derived from assays or measurements made in clinical or
research laboratories. However, laboratory phenotyping is expensive and low-throughput,
and a variety of promising alternatives has arisen. For example, initiatives such as the
“quantified self” allow tool makers and users with an interest in self-tracking to wear
inexpensive sensors that collect data over extended periods of time; the data is then
collaboratively analyzed and correlated through a crowdsourcing approach. A second
potential source of phenotype data is that of behavior and epidemiological modeling
through analysis of data from social networks. Mass behavior can be modeled, even
predicted, through harnessing the data made available by the advent and popularity of the

1 See, for example, http://www.23andme.com and http://www.patientslikeme.com
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social web. These models could be used for market analysis, public health or even
predicting the outcome of democratic elections. Furthermore, the dynamism in these
networks ensures that the models can be constantly adapted and their accuracy improved.
Finally, there is great potential in mining large numbers of scientific note-taking tools, such
as electronic lab-books or electronic medical records, since these can reveal the
inefficiencies and bottlenecks in the scientific discovery process.

Mass phenotyping is the process of collecting and integrating massive amounts of
phenotypical information in order to discover patterns which would be invisible otherwise,
and to correlate them with genotypical information. There are many applications where
mass phenotyping would have a large impact. Diet patterns and obesity, for example, have
been found to be correlated with a higher incidence of several cancers [Calle and Thun
2004]; mass phenotyping through integrating this genotypical information with patient
behavior and physiological parameters could potentially be used to discover other such
correlations that would otherwise remain unknown. Another example is mental disorders,
which constitute 13 percent of the global burden on disease, surpassing both cardiovascular
disease and cancer [Collins et al. 2011], and tend to be more prevalent in the ageing
population. The most obvious symptom of mental diseases is behavioral changes, which can
very easily be tracked through wearable or fixed sensors. However, not all behavior changes
translate to disease: mass phenotyping can be used to identify which behavior changes are
likely to be correlated with disease. Geno-phenotyping can be used to further validate and
weight this likeliness of disease. Finally, public health policies may be put in place in order
to monitor and prevent certain mass behaviors that could result in the spread of disease. In
[Ferguson et al. 2005], the authors showed that elimination of nascent pandemics may be
feasible using a combination of geographically targeted prophylaxis and social distancing
measures. The availability of patterns from mass phenotyping in those rare situations may
enable the easier identification and handling of risk groups, either through genetically
identifying those individuals who are more likely to be affected or monitoring risk
behaviors.

Discovery Informatics could enable the representation and integration of massive
amounts of diverse phenotype information. Novel discovery and analytic techniques would
help uncover complex behavior, social, and disease patterns. The collection on a large scale
of detailed phenotype and other relevant data directly from individual volunteers would
significantly expand and enrich the data available to researchers.

3 Computational Support of the Discovery Process

Written by Yolanda Gil and Kerstin Kleese-Van Dam

While advances in computing have transformed science, they have done so in tandem
with a significant increase in the complexity of science practice. The depth and diversity of
skills required to analyze the data available are hampering our ability to discover new
complex phenomena. Many aspects of scientists’ work are still labor intensive. Obtaining
insight and understanding is increasingly hard in light of the growing complexity of science
endeavors.
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Highlights of Scientific Discovery Processes

* Make assumptions by analyzing existing knowledge in the area of
study
— Literature review
— Data exploration
— Collaboration with colleagues
* Internalization of current challenges leads to ideas
» Consider the importance, novelty, feasibility, and cost of the ideas
* Formulate testable hypotheses
* Make consistent and validate with existing knowledge
* Design the experiment or study
— |dentify controls
— Inventory materials and equipment
- Protocols

— Statistics and computational tools
» Execute the experiment or study

— Obtain resources: funding, personnel, materials
— Adaptive and real time experimentation
— Integrative interpretation
* Analyze, explore, and validate the data
* Interpreting the results
— Collaborative analysis
* Putting the results in context
» Communicating and publishing
» Prioritizing the next thing

Figure 2. A high-level view of scientific discovery processes

Many of these obstacles to accelerating scientific discoveries pose fundamental research
challenges for computer science. Interpreting results from complex data, gaining insights,
and managing all the information and knowledge available are increasingly more
challenging tasks. In addition, the overhead of interacting with many separate elements
(software systems, data, people) significantly curtails productivity. Scientists could be much
more productive and creative if new approaches were developed to manage the complexity
of a broad spectrum of scientific processes.

3.1 Scientific Research and Discovery Processes

Figure 2 gives a high-level view of major aspects of scientific discovery processes.
Scientists invest a considerable amount of their time understanding the state of the art in
their area of investigation, by reading the literature, analyzing data, and discussing with
colleagues. This understanding results in ideas that lead to the formulation of hypotheses
and the design of experiments to test and evaluate them. The nature of experiments varies
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widely across different areas of science, but preparing an experiment typically includes
identifying controls, procuring instruments and other resources, designing protocols and
techniques to collect the data, and selecting statistical methods and computational tools to
analyze the data and confirm or refute hypotheses. Carrying out the experiments may take
a long period of time, and may require monitoring and real-time analysis and subsequent
adjustment of the instrumental apparatus. The data obtained is then analyzed and
interpreted, typically by performing data cleaning and quality control steps, integrating data
from additional sources, and then running combinations of analytic software into an end-to-
end analysis method (e.g., simulation models, statistical routines, data mining). Interpreting
the results then involves creating explanations for observed phenomena and examining the
original hypotheses in light of the experimental results. This is often done in consultation
with colleagues, and is an important component of the scientific publication process that
ensues. Finally, scientists reflect on the work and prioritize what might be the most
promising directions to pursue next.

3.2 Success Stories

Research in recent years has shown the impact of improving scientific discovery
processes. The research of the workshop participants represented several major aspects of
work in this area.

Creating integrated models of existing knowledge from publications: The focus is on
creating structured knowledge about what is known in particular areas of science, so that
scientists can very efficiently review background knowledge relevant to their research. In
biomedical research, for example, thousands of databases are created manually for this
purpose [Galperin and Fernandez-Sudrez 2011]. Some research focuses on automatic
methods to create knowledge bases from the literature. General-purpose text extraction
techniques have been adapted to tackle particular types of facts and to integrate them with
other available knowledge [Leach et al. 2009]. Reasoning algorithms have been developed
to support inference of new hypotheses from a given body of knowledge, and to evaluate
alternative hypotheses about biological process models by presenting to the user the
assumptions and relationships that must hold in order for their model of a biological
process to be true [Callahan et al. 2011]. Other research focuses on representing and
relating scientific claims in different publications, the evidence to support them, and their
relationships to other claims [Ciccarese et al. 2012].

Workflows to analyze data efficiently and record provenance: Workflows offer explicit
representations of computational methods, and have long been recognized as a crucial
element of scientific discourse [Gil et al. 2007]. Workflows represent explicitly how data is
processed by software components, and as a result workflow systems can manage complex
data analysis processes and keep automatic records of the provenance of new results
obtained. This makes scientific methods and processes more reusable, inspectable, and
reproducible. Shared workflow repositories and provenance standards are beginning to
emerge. Workflow systems can automatically explore the space of possible experiments
and customize the data analysis to the data [Gil et al. 2011].
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Success Story Highlight:
Discoveries through Automated Synthesis and Assisted Analysis of Scientific Publications

Efficient discovery of genes involved in mouse craniofacial development with the Hanalyzer system
[Leach et al 09]. The system creates assertions based on co-occurrences in PubMed articles using
open software for text extraction. It uses semantic web infrastructure to integrate assertions from
existing biomedical databases. The system then reasons about the resulting semantic network to
create novel correlations in the network. Scientists can visualize the augmented network and create
hypotheses that can be tested in lab experiments. The bright green nodes and edges in the
visualization shown here were inferred by the system, and suggested to scientists several new genes
that were expressed but not previously detected experimentally. More details at
http://hanalyzer.sourceforge.net.
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Success Story Highlight:
Efficient Data Analysis through Automatic Workflow Configuration

Semantic metadata and provenance are used throughout the data analysis process in the Karma data
integration and the Wings workflow system to automatically choose models for water reaeration
depending on river flow conditions. Karma integrates data from sensors with data from regional and
national sources, generating metadata that is attached to the integrated datasets. Wings uses the flow,
velocity, and reach geomorphology for each day of the period of analysis to choose an appropriate
model, effectively configuring a different workflow to be run every day. The red dots highlight how the
model chosen changes over time. More details at http://wings-workflows.org.
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Success Story Highlight:
User-Centered Problem-Driven Visualizations

Visualizations designed to incorporate usability principles, to take into account cognitive loads of
users, centered on the scientific tasks can have a positive impact on data-intensive science. Sunfall
is a collaborative visual analytics system in operation at a large-scale astrophysics project, the
Nearby Supernova Factory (SNfactory). Sunfall reduced the number of false positive supernova
candidates by a factor of 10 and reduced scientist scanning workload by 90%.The project has
discovered over 1,000 supernovae, of which some 600 are spectroscopically confirmed and nearly
400 of which are the critical Type la SNe so useful for cosmological research. The design principles
developed for Sunfall could be applied to future scientific large-scale automated transient alert
pipelines, such as NASA's Joint Dark Energy Mission (JDEM) or the Large Synoptic Survey
Telescope (LSST). More details at http://snfactory.lbl.gov.
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Information visualization to gain insights: A major focus of scientific visualization work
has traditionally been the presentation of large datasets, addressing algorithmic and scaling
issues. More recently, a growing trend in visualization is on user-centered, problem-driven
work that emphasizes the selection, integration, and presentation of information in the
context of a scientist’s task [Meyer et al. 2009; Meyer et al. 2010]. This new line of research
emphasizes the combination of data with models and other information, and the design of
interactive interfaces that lead to sensemaking and gaining insight for real-world problems.
Furthermore, this approach strongly relies on close collaboration between visualization
researchers and scientists to ensure that the resulting visualization tools effectively support
complex analysis tasks within the scientific discovery process.

3.3 Shortcomings of the Current State of Affairs

Many aspects of the scientific discovery process would be significantly more
manageable through intelligent assistance and, in some cases, automation.

Some activities in science are only supported in very basic ways. For example,
reviewing the literature to understand the state of the art in an area remains largely a
human driven process. There have been many improvements, such as the availability of
capable search engines, publishers’ annotations of articles with metadata, explicit networks
of citations, and many others. We mentioned above the ongoing research on creating
declarative knowledge bases to amalgamate what is otherwise scattered across
publications. These resources are extremely valuable, but they are created manually and
thus will not scale [Baumgartner et al. 2007]. Automatic extraction from text has good
performance for very particular types of tasks, such as entity co-reference. However, it has
many limitations in terms of extracting more sophisticated structured information from

19



articles. Ontologies provide appropriate structures for the knowledge bases, but each one is
developed with a particular focus, and integrating them is a challenge. The reasoners used
have limitations in the Kinds of inferences that they make. Deductive inferences are useful
to add implied facts that are not explicitly stated, but more sophisticated reasoning is
required to generate explanations and propose hypotheses.

Data collection, integration, and analysis processes include many repetitive steps that
are still done manually, for example, data reformatting and conversion routines. As data is
analyzed by different software (various simulation models, statistic analyses, etc), it must
be converted to the particular formats required by each software tool. The entire process is
typically driven manually, with the scientist selecting the software to compose complex
methods, and configuring parameters each step of the way. Even workflow systems that
support the process are not proactive in suggesting appropriate methods for a scientist’s
problem and data at hand.

Scientific collaborations are common but collaborative processes are far from
adequately supported, particularly those of an opportunistic nature. Increasingly, scientific
research is conducted by multi-institutional and interdisciplinary project teams, processing
exponentially vaster and more complex data flows. Science collaboratories aim to bridge
this gap by allowing scientists to share, reuse, and refine their computational workflows.
However, tools for making ad hoc cross-disciplinary collaborations more commonplace are
lacking, as is the fluid and efficient exchange of knowledge among researchers.

3.4 Research Challenges

Scientific processes must be made more explicit, allowing computers to manage them.
Those processes should be described in such a way that domain-specific algorithms and
software have well-defined roles. Aspects of those processes that focus on related activities
should be easier to integrate with one another.

More knowledge about the context of each of the scientist’s activities must be captured,
so that systems can be more proactive and participatory in the processes. Formal
representations of models, as well as appropriate metadata, would also facilitate the
management of the processes.

Capturing scientific processes pervasively will enable cost-effective reproducibility.
Open software and provenance standards to capture the processes used to generate
scientific results will enable broad sharing and reuse of methods, enable inspectability of
published results, and facilitate integration of research results even across domains.
Science is steadily moving toward more open and shared resources, and we will need new
approaches to discover such resources and exploit them. Privacy mechanisms for data and
processes must be taken into account to respect personal and sensitive information,
particularly in tools for biomedical and social sciences.

There are many examples of approaches designed to assist with various aspects of the
discovery process, but there is much room for further investigation. Research on the
generality of those approaches and on their broader uptake is needed. This research must
involve both scientists and computer science researchers, so that both cutting-edge basic
research and science impact can be ensured. We must understand well the tradeoff between
generalized approaches and targeted approaches in terms of their effectiveness and
usability. A better understanding of adoption of scientific software must be developed.
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The use of data and information throughout scientific processes must be better
supported. Finding information and data sources that are relevant to a problem should be
done in terms of meaningful to a scientist. Data and information integration must be greatly
improved, particularly through higher level concepts that allow cross-disciplinary research.

Existing social and collaborative approaches are insufficient to support the fluid
exchanges of data and knowledge that are increasingly needed for scientific discoveries.
Although many technologies make the sharing of information very easy, knowledge is still
difficult to transfer, because it is often hard to represent and changes rapidly. However,
common understanding can be negotiated. Social software could play a bigger role in
developing common ground in relation to knowledge artifacts.

Many research challenges remain in visualization and intelligent user interfaces.
Examining and exploring data and models interactively can help scientists gain insights into
a problem. The design of interfaces for scientific tasks is an area that needs to receive more
attention. Many lessons learned are scattered across science disciplines and may not be
well studied or even reported. The principles behind effective integrated information
presentations and interactive visualizations are not well developed.

4 Connecting Data and Models
Written by Pat Langley and Yolanda Gil

In a world flooded with data, there is a natural tendency to focus on data-centered
science. Discovery Informatics research would bring models to the forefront and emphasize
the interplay between models and data. Science has always involved an iterative process
where the collection and analysis of data leads to models, and where model predictions and
anomalies encourage collection of more data. Models also play a role in the design of new
measuring instruments that produce new observations, and in the transfer of knowledge
across sciences and into the engineering disciplines. New basic research is needed on
approaches to design discovery systems that can exploit the interplay between data and
models, closing the loop between data-guided model revision and model-guided data
collection.

4.1 Models and Scientific Discovery

The use of models to communicate knowledge, to generate explanations of phenomena,
and to turn science knowledge into engineering principles is a distinguishing characteristic
of science. The use of models is absent in purely theoretical disciplines, such as philosophy,
and purely empirical ones that mine data without attempting to understand general laws.

Figure 3 illustrates the variety of forms that models take across different scientific
fields. For example, qualitative causal models are widely used in biology. In ecology,
differential equations and Bayesian models are more common. In psychology, rule-based
systems are used to represent cognitive skills. Physicists rely heavily in mathematical
formalisms. In addition to the different forms of the models, there is also variability in
terms of how explicit they are. Some models are simply expressed in the text of scientific
articles, others are captured in transparent notations (e.g., a causal network), and others are
embodied in artificial artifacts (e.g., software for complex simulations).
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The Use of Models to Explain Data is a Distinguishing Characteristic of Science
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Figure 3. The interplay between data and models

Figure 3 also highlights the interplay between models and data in science. The
generation, evaluation, and selection of models are all informed by observations, whether
experimental or observational in character. Conversely, the collection and interpretation of
data is informed by candidate models. A commonly used metaphor in computer science
involves the notion of searching through a space of alternatives. If we apply this metaphor
to the scientific enterprise, we can view scientists as carrying out search through two spaces
that are connected but distinct. Search through the space of models is constrained by
theoretical knowledge and by data, since each model aims to fit and/or explain the latter.
Search through the space of data is constrained by current models, since observations are
most useful when they distinguish among alternative accounts. These search spaces are
very complex, and often heuristic knowledge guides scientists toward more promising areas
of the search space. Together, these two interactions produce an iterative loop between
data collection and model construction/revision that drives much of the scientific process.

The history of science suggests that the precise relationship between models and data
can change over time. In a discipline's early stages, scientists are often content to find
empirical relations that describe, summarize, and predict data collected through
experimentation or observation. In contrast, more advanced fields often expect their
models to move beyond simple description and to provide causal accounts or explanations
that use conceptual terms familiar to scientists.

Computational tools that relate data and models would have great impact on discovery.
Such computational aids can improve both the speed and the accuracy of model
construction, data analysis, and model evaluation. This in turn will let scientists develop
more comprehensive models that connect to larger datasets, which means they will be able
to study and understand more complex phenomena effectively. Moreover, because these
computational mechanisms embody general principles of model development, data
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analysis, and evaluation, they will support transfer of knowledge and best practices among
different scientific groups and even across separate fields. They would help make key
aspects of the scientific method accessible to the wider community, and thus broaden
participation in the overall scientific enterprise. They would also help disseminate sound
scientific practices to government and industry practitioners interested in data analysis and
data-intensive computing.

4.2 Success Stories

Computational discovery tools that integrate models and data have shown the potential
for computers to contribute to the understanding of complex scientific phenomena.

Computational discovery tools that use scientific notations: The notations for models
used in computational tools are often designed with computational tractability in mind,
leading to far less expressive power than found in traditional scientific formalisms.
Approaches that aim to discover knowledge in established scientific notations, whether
qualitative causal models or differential equations or reaction pathways, make the models
easier to communicate and understand [Shrager and Langley 1990; Dzeroski et al. 2007].

Success Story Highlight:
Automated Experimentation and Discovery of Natural Phenomena

Automated discovery systems formulate hypotheses and remote control an experiment to validate or
refute those hypotheses. Initially the experiments are random, but as data are collected the system
carries out experiments that test the most promising hypotheses. In a cycle of experimentation,
hypotheses generation, and experiment design, the system can vary multiple parameters at once and
work with multiple experimental systems simultaneously to rapidly converge on a small set of
hypotheses for expert human inspection. For example, in genomics this approach scales better than
traditional high throughput experiments that scan through multiple parameters in brute force. More

details at http://www.eureqa.org.
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Robot scientists to automate end-to-end discovery: Robot scientists are systems that
automate experimental execution and observation, and combine it with experimental
design and model revision. Recent examples have been demonstrated in fields as diverse as
physics [Schmidt and Lipson 2009] and cell biology [King et al. 2011].

Discovery of causal models: While there are many approaches to establishing simple
associations or correlations in data, for many scientific phenomena the interest is in the
discovery of causal models [Glymour 2004; Ramsey et al. 2010]. The availability of large
datasets has made it possible to test causal hypotheses efficiently [Jensen et al. 2008],
accelerating the cycle of discovery through bypassing the execution of sometimes costly
experiments.

4.3 Shortcomings of the Current State of Affairs

As noted above, computers have been used successfully in science for decades, both to
utilize formal models for prediction and explanation, on one hand, and to generate
candidate hypotheses by analyzing data, on the other. However, these two movements have
generally remained distinct, with work on model representation and simulation having only
weak connections to observations, and with work on data analysis and hypothesis
generation having few links to modeling traditions. Both computational approaches have
offered many benefits to scientists, but, as long as they remain isolated from each other,
they cannot reach their full potentials.

One drawback concerns representation. There exist a variety of computational
environments that let users create, visualize, and simulate scientific models, especially in
the fields of biology and environmental sciences. Some of these frameworks encode models
in fairly simplistic terms (e.g., sets of causal links or sets of numeric equations), but others
support richer conceptions of models that incorporate higher level content. Unfortunately,
most of the work on computational discovery of models from data has focused instead on
formalisms developed by computational researchers rather than domain scientists. There
is also an inherent tradeoff between the expressive power of data or knowledge
representations and their usability. In some areas of science there has been significant
work on elaborate ontologies and data formats, yet users tend to gravitate toward the
simplest ones that may lack expressiveness but are easiest to use for the task at hand. Many
scientific disciplines that rely heavily on modeling and simulation also have a significant
body of a priori knowledge, for example, in the case of Earth science there are physical
principles governing fluid dynamics, heat transfer, and so on. Domain knowledge should be
taken into account when analyzing data generated by such models.

Another limitation of most computational scientific research is that it assumes
unidirectional processing. Some methods utilize models to generate predictions, at most
using the match to observations for evaluation purposes. Other approaches utilize data to
generate candidate models, but they assume one-pass processing in the opposite direction.
Neither framework reflects the iterative, closed-loop character of the scientific process that
has served many disciplines so well for centuries.

The recent and increasing availability of very large datasets in many areas of science has
altered traditional processes for model formulation. Historically, the scientific context at a
time in a discipline has suggested particular causal questions, and an experiment, or related
sequence of experiments has been designed to answer them. Recently, the interest has been
on automated or semi-automated methods for searching very large datasets for patterns
that indicate more than accidental correlations. These search methods need development—
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for example, methods are needed that can reliably extract causal cascades and their
feedbacks from brain imaging data.

The availability of large datasets also presents issues of scale in formulating appropriate
models. Many techniques scale poorly in the number of variables and in spatio-temporal
granularity, and many methods for data-guided model induction scale poorly in the amount
of data. The availability of data at different resolutions and different scales, and via
different instruments (as they are upgraded over time), also presents important challenges
to the understanding of the underlying phenomena.

Computational discovery methods have the potential for application to many different
scientific fields, but their generality has not been well investigated. Clearly, there is a need
for computational environments that scale well to all the facets of complexity that arise in
science and that are accessible to a broad community of researchers.

4.4 Research Challenges

We should develop computational formalisms for scientific models, and their
relationships to data, that support the full range of notations encountered in the sciences.
This will require increasing the representational expressiveness of formalisms for both
models and data beyond those typically used in computational work. It will also mean
taking seriously the need to map these digital formalisms onto notations already in use by
scientific communities for publication, instruction, and other forms of communication. The
aim is to provide computational support for the full variety of scientific activities without
limiting researchers' ability to express content.

We should address issues of generality and usability by identifying equivalence classes
of scientific tasks that enable reuse of computational methods across many disciplines. The
mechanisms that we develop for these equivalence classes should scale effectively (ideally,
in a linear fashion) to sources of complexity in both models and data. One natural approach
is to take advantage of the feedback loop between data collection and model revision, as
discussed earlier. Moreover, these techniques should provide explicit support for reusing
models, datasets, and operations performed over them.

To further ensure usability, we should embed these representations and mechanisms
into interactive software environments that support the construction and revision of
models, the collection and explanation of observations, and the relations among these
processes. These integrated systems should incorporate not only efficient and general
algorithms, but also principles of human-computer interaction to ensure they are widely
accessible. We need systems that assist individual scientists in creating and updating
models, collecting and interpreting data, and other key activities and processes that focus
on the interplay of models and data. We also need explicit interlinking of science products
in scientific communities that supports sharing not only of annotated datasets and
comprehensive models, but also relations among them and links to relevant literature. This
should include links to the data analysis and model creation processes in forms that make
scientific results readily inspectable and easily reproducible.

The scale and complexity of the space of possible models is daunting for many scientific
phenomena. Computational discovery tools will be crucial to make strides in these areas.
Looking to the future, there will be many science questions that would require model
creation well beyond human ability. Designing systems that can operate in a true

25



partnership with scientists and be trusted to explore and discover on their own will be key
to deciphering many long standing scientific problems.

Finally, to let us determine whether our community is making progress, we must
develop methods for evaluating both component algorithms and integrated discovery
systems. Some techniques should draw on experiences with actual scientific models and
data, to establish relevance, despite the complication that, in science, we can never be
certain of “ground truth.” However, we can complement such studies with evaluation
methods that utilize synthetic models and data, which can provide known targets and also
allow systematic experimentation [Langley 1996]. Together, these will let us study the
robustness of our computational methods to factors such as model and data complexity,
incomplete knowledge, and measurement noise.

5 Social Computing for Science
Written by Yolanda Gil and Haym Hirsh

Scientific questions requiring overwhelming amounts of labor seem to be within reach
thanks to the many unskilled volunteers that offer their services to science. These citizen
scientists are contributing daily by collecting, labeling, and even analyzing massive amounts
of data points [Savage 2012]. In addition, there is emerging evidence of collective
intelligence resulting from group work [Woolley et al. 2010]. Harnessing people’s ability to
contribute to science is one of the most exciting approaches for innovating science
processes and enable discoveries that were once out of our reach.

Success Story Highlight:
Social Computing for Scientific Discovery

Galaxy Zoo went live in 2007 and enlisted 175,000 citizen scientists to contribute to the classification of
the morphology of one million galaxies from the Sloan Digital Sky Survey (SDSS). This task is
impossible for computers and unmanageable for the science community, but can be tackled by
thousands of lightly trained volunteers. A schoolteacher in Holland, Hanny van Arkel, discovered a
strange green object below the galaxy in one of the pictures, now known as Hanny’s Voorwerp (Dutch
for object) and became co-author in the published article. Today, several sister projects in space,
humanities, biology, and climate have engaged more than 630,000 people under the Zooniverse
platform. More details at http://www.zooniverse.org.
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5.1 The Role of Volunteer Contributors in Scientific Discovery

Science questions are becoming increasingly ambitious, and researchers do not always
have the resources to address them. Contrast this with the strong interest of the public at
large in science. Volunteers find tremendous appeal in contributing to science in a
meaningful way. But they may be motivated for many other reasons. People also like to be
able to contribute to solving problems of societal interest, for example, by contributing local
geospatially tagged observations or personal medical data. We need more creative ways to
harness people with a proven ability to make meaningful contributions to science. We need
to broaden public participation in science, including students, motivated citizens, and
younger scientists.

5.2 Success Stories

In recent years, a number of systems have been developed that successfully use
volunteer contributions for a variety of science tasks. These systems explore particular
points of what could be a very large space of possibilities in terms of volunteer
contributions.

Success stories in this area exemplify different types of volunteer contributions, each
with thousands or hundreds of thousands of participants. One approach is to take a large
task and decompose it into very small subtasks that can be distributed to massive numbers
of volunteer contributors who will each complete their task in no time. An example is the
eBird project, where people are contributing bird sightings in their backyards giving
scientists large amounts of data that they can use to study bird migrations
(http://ebird.org/). These volunteers are naturally geographically distributed, so it takes
them very little effort to provide this kind of data. Another way to harness volunteer effort
is to give them tasks that are beyond a computer’s abilities and can be better done by
people. An example is GalaxyZoo, where people tag images taken from telescopes, and have
provided astronomers with labeled observations of different kinds of galaxies
(http://www.galaxyzoo.org/). Current image processing algorithms are not able to
generate accurate labels, so here humans are performing computations that are not possible
for computers. The Zooniverse system is a generalization of GalaxyZoo that is being applied
to other astronomy problems, as well as historical and biology research
(http://www.zooniverse.org). In other cases, collaborating in a task brings out people’s
ingenuity and creativity to accomplish things that they could not do individually. For
example, conjectures in mathematics have been proven in very short amounts of time by
collaborating volunteers (http://polymathprojects.org).

5.3 Shortcomings of the Current State of Affairs

Citizen science could be used in many more science areas if their social dynamics were
better understood. Tales of discoveries aided by high school teachers, K-12 students,
gamers, and crowds have become the talk of the town. We have little understanding of
what science tasks might benefit from volunteer contributors, and how to make such
volunteer efforts commonplace across different fields of science.

We have only an initial and very limited understanding of the principles for designing
these systems so that they have appeal to contributors and keep them engaged in the long
run. Polymath has very specific rules of engagement that facilitate collaboration. In other
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cases, casting the work as a game is crucial to popularity. The key features in the design of
all these kinds of systems that led to their success are not well understood.

Social computing systems for science are part of the overall science discovery process.
It should be easy for other scientists to identify the aspects of their processes that could be
aided by social computing; however, this is not well understood.

5.4 Research Challenges

Much research is needed to understand how to create effective human-computer teams.
We must analyze existing approaches and develop a taxonomy of approaches with many
modalities for human participation and a variety of forms of contribution. The role of
human computation in larger computing contexts must be better studied. The collaborative
creation of knowledge is an open research question, particularly as regards the
accommodation of ad-hoc collaborations and unanticipated uses of data and information.
Human creativity and ingenuity are a crucial resource in science, and can drive brute-force
computation that systems can best carry out. Defining synergistic systems that combine
human contributions and computation will innovate scientific processes and can lead to
discoveries in areas where traditional methods have not made sufficient strides.

An open area of research is the design of such social computing systems. They must be
designed so that the goals and beliefs of both humans and systems can be tracked and
mutually understood in the context of the problem at hand and as the interactions progress.
Participants may have a variety of backgrounds and expertise, so their roles and types of
contributions must be defined and evolved over time. Defining tasks, decomposing them
appropriately, and making appropriate assignments to either teams or individuals remains
a challenge. The incentives that motivate people to participate, to sustain training, to
change roles and types of contributions, and generally to stay engaged are not well
understood.

New social computing paradigms could be developed that significantly augment what
has been done to date. This could include new ways of producing, communicating, and
reviewing scientific results, possibly redesigning many social aspects of traditional scientific
processes.

6 Discovery Informatics: A Research Agenda for Intelligent
Systems

The goals, associated challenges, and resulting research agenda for Discovery
Informatics were highlighted in Table 1. Three major areas of research are key to meeting
the challenges of Discovery Informatics:

1. Information and knowledge. This includes research on new approaches to
knowledge representation, algorithms for reasoning about abduction and about
constraints, reasoning about uncertainty in all forms, process modeling and
reasoning techniques, non-monotonic theory revision, ontology development and
exploitation, natural language processing, information and knowledge management,
data and information integration.
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2. Interaction. Research includes new approaches to human-computer interaction,
intelligent assistance, collaboration and communication interfaces, visualizations of
both models and data, social computing in science, cognitive aspects of discovery
including innovation and creativity processes, and tutoring and education
frameworks.

3. Autonomy. This area of research includes new approaches to integrating intelligent
capabilities, adaptive and robust intelligence, distributed intelligence, model-driven
learning, robotics, and intelligent control.

7 General Observations

Written by Miriah Meyer, Karsten Steinhaeuser, and Yolanda Gil

Several general observations and recurring themes emerged from the discussions. We
summarize them here.

Big Data

Discovery Informatics will tackle unique big data challenges that would otherwise
remain unaddressed. The volume, variety, and velocity of data is surpassing our ability to
interpret and understand observations and derive comprehensive models that lead to new
discoveries.

First, Discovery Informatics will address volume through the development of new
approaches that integrate intelligent capabilities to reason with sophisticated scientific
knowledge, explore large hypotheses spaces, fully automate the design and execution of
experiments, and dynamically learn and adapt models to changing phenomena. These
advanced intelligent capabilities will be required to mine vast quantities of data to
understand complex phenomena.

Second, Discovery Informatics will address data variety by enabling the aggregation and
analysis of smaller datasets, giving rise to new kinds of longitudinal big data. Moreover,
many exciting prospects result from the integration of big data with local datasets collected
by individual investigators (sometimes called “dark data” [Heidorn 2008]). Big data can
provide breadth to smaller datasets to aid understanding of local phenomena in the context
of the broader bigger picture.

Third, Discovery Informatics will enable coping with the velocity of data collection.
Real-time data processing requires adaptive and flexible intelligent systems that can keep
up with the pace of the data available, harness large temporal and spatial extent of complex
phenomena, and design new collection apparatus that incorporate model-based control and
experimentation.

Innovating Science Practice for Individual Scientists

A very large number of individual scientists who are studying small datasets would
bring their research to a new level by integrating it with larger datasets about related,
broader phenomena. There are myriads of such single investigators, possibly with the help
of a few graduate students, working on problems of their own choosing. This type of
research complements the science done by large collaboration teams, and is vital in
engaging young scientists and building a sustainable workforce. It is critical to
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acknowledge and balance all of these modes of scientific research. Discovery Informatics
should address the spectrum of discoveries across the board.

Scientific Workflow

Within the traditional paradigm of the scientific method, observation generally leads to
the formulation of hypotheses, which in turn are tested using controlled, repeatable
experiments. However, advances in computational tools may radically transform the
scientific discovery process. For one, Discovery Informatics can leverage abundant data in
conjunction with powerful analysis tools for hypothesis generation. Moreover, the long-term
vision (which is already being pioneered in some scientific domains, e.g., biology) includes
comprehensive frameworks that can not only generate scientific hypotheses, but
automatically design and carry out experiments to test them. Depending on the scientific
discipline, these tasks may be performed autonomously (e.g., bench experiments) or in
collaboration with human scientists (e.g., control of instruments).

Fading Boundaries between Computer Science and Domain Sciences

Many discoveries will be enabled by fading the boundaries between computer science
and the domain sciences. Many rich problems and intuitions brought to bear by scientists
can only be investigated through tools and innovations brought about by collaborations
with computer scientists. However, these collaborations remain challenging to establish
and to maintain. Scientists do not always know what they need, and do not have good
connections with social scientists and computer science researchers who understand how
to design discovery systems for ill-defined problems. Scientists often see computer
scientists as providers of computing services, or as developers of research prototypes that
are not ready for real use. Conversely, computer scientists often do not value the
contributions to computer science brought about by scientists in other disciplines. In the
end, the sciences are more open to computing than computing is open to the sciences. It is
common to see computer scientists hired by science departments; it is extremely rare for
scientists to become part of computer science departments. We need to do a better job of
blurring the boundaries between disciplines, recognizing contributions that occur when
those boundaries are crossed.

Adoption of Tools for Discovery across Sciences

Many discovery tools have been developed in different sciences, but rarely trespass into
other science domains. In addition, the adoption of computer science tools for discovery is
very uneven, as the number and nature of discovery tools is very diverse across sciences.
There is much to be gained from automating routine scientific tasks across all sciences. We
need to highlight success stories to encourage adoption and dissemination of ideas in
Discovery Informatics across disciplines.

Discovering the New versus Discovering the Old

Many tools for discovery assist scientists by exposing and connecting what they have
already discovered. Although they have value in their own right, more emphasis is needed
on tools that discover new laws and provide new insights. As the complexity of scientific
problems grows, the dimensionality of the hypothesis spaces will go beyond human
abilities. We need to develop systems that can tame that complexity.
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Building a Community for Discovery Informatics Research

Many workshop participants were surprised to find that they had many common
interests, and yet they had never met one another before. They found new colleagues who
already shared views about the challenges and approaches to science discovery, but who
had never interacted before. The forums where the various workshop participants publish
are very diverse and mostly non-overlapping. There is no common forum for sharing
problems and learning from one another’s experiences. More efficient investments will
occur when researchers are able to build on one another’s work.

Identifying Success Stories and Lessons Learned

Many aspects of Discovery Informatics research are empirical and practical in nature,
and positive results are better documented than efforts that did not lead to strong
successes, which are just as important but seldom reported. Success stories need to be
identified and highlighted to better articulate the potential benefits of this area of research.

8 Why Now?

Written by Yolanda Gil and Haym Hirsh

Workshop participants stressed the need to act immediately. There is no doubt that our
ability to generate and share data has surpassed our ability to analyze it. There is no doubt
that we have data available or ready to be collected that could lead to many great
discoveries. We should strive to be in a position where not only can we harness increasing
amounts of data, but we will have developed the capability to pose increasingly complex
questions that current methods do not even allow us to begin to imagine.

Addressing these challenges will require fundamental basic research that will
significantly raise the bar on the intelligent capabilities of computational frameworks for
science. Advancing our understanding of intelligence skills to supporting scientific
discovery will bring information processing to a whole new level. These basic research
advances will permeate all areas of computing.

Enabling discoveries is not just desirable for the sake of science, but is a necessity, as
discoveries address problems of national and societal importance. National security is in
severe need of better technologies for data analysis, noticing the unusual, and discovering
patterns. Personal health and preventive medicine depend on our ability to enable people
to contribute to the scientific enterprise in meaningful ways, by contributing data, analysis,
personal histories, and sensor data. Our future relies on a better understanding of
environmental and sustainability factors that are well beyond our current abilities. Our
national competitiveness would be significantly boosted by a significant push in our
nation’s capabilities as a knowledge economy that would result from a renewed strength in
Discovery Informatics.

Investments in Discovery Informatics would have a multiplicative effect in several
dimensions. First, by addressing the human bottleneck in our data-rich world, advances in
this area would help increase the rate of discoveries. Furthermore, they would enable
investigations that we cannot even dare to pose today. In addition, advances in this area
could be leveraged across all science and engineering disciplines. Organizing a community
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would address current redundancy and inefficient compartmentalization in the domain
informatics (e.g., bio/geo/eco/...).

Discovery Informatics would also benefit the individual science researcher while
benefiting larger science collaborations. Single investigators working on local problems
would find their activities better supported in analyzing their personal data. Moreover,
Discovery Informatics would greatly facilitate the analysis of their local data in combination
with large, shared datasets and big data initiatives that would otherwise not be
incorporated into their work in practice.

Science is a costly enterprise, and engaging the public would enable scientists to
harness massive amounts of volunteer effort from people who could make meaningful
contributions. Discovery Informatics could inspire budding scientists of all ages, from
energetic young students to retired professionals with interest and ability to volunteer time
and resources.

By opening the scientific process, Discovery Informatics would engage, educate, and
empower students and the public to innovate and to improve their lives. Personal data
collected by individuals would give rise to “personal science”, where people could study, for
example, their own health, improve their neighborhoods, and monitor their local ecosystem.

Discovery Informatics would enable lifelong learning and training of the future
workforce. The development of usable tools that encapsulate, automate, and disseminate
important aspects of state-of-the-art scientific practice would allow: K-12 students to access
important aspects of science research; undergraduates to become more involved in
research projects, as they would be more accessible; post-doctoral and young researchers
to be more productive in building their careers in science and engineering; and seasoned
researchers to learn about new disciplines in a hands-on practical manner, significantly
facilitating cross-disciplinary work.

9 Reflecting on the Workshop: Scientist Perspectives

Two prominent scientists attended the workshop and were invited to provide personal
perspectives on the potential of Discovery Informatics to impact science.

Phil Bourne is a Professor in the School of Pharmacy at the University of California, San
Diego. In addition to his contributions to computational biology, he is widely known for his
leadership in the Protein Data Bank, one of the most widely used resources in the
biomedical community. He is also founding editor of PLoS Computational Biology, a driving
force in open scientific data sharing and publications.

Alex Szalay is an astrophysicist at the Johns Hopkins University. He collaborated for
many years with Jim Grey on handling big data in astronomy. He has co-led several large
community efforts including the Sloan Digital Sky Survey and the National Virtual
Observatory, and the GalaxyZoo volunteer effort.
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9.1 A Biologist’s Perspective, by Phil Bourne

From my perspective as a basic researcher in
computational biology, a maintainer of a major biological
database, the Protein Data Bank (PDB), and the Editor in
Chief of a high-profile, open-access journal (PLoS
Computational Biology), the data deluge and how to
address it in the best interest of science has been on my
mind for some time. Somehow the term Discovery
Informatics put my various thoughts into a larger and
more exciting perspective. Prior to the workshop, many
of us had been discussing various aspects of improving
the scholarly lifecycle in a new medium in various
forums, but the idea, perhaps obvious in retrospect, of
improving the rate and depth of scientific discovery as a
driver bought it all together. This happened in part
because of the breadth of expertise in the room, all of
which will be needed to make a difference.

[ was reminded of similar meetings some 20 years
ago, as bioinformatics began to emerge. [ can remember
discussions with computer scientists around structures.

“As this openness
further pervades other
disciplines and science
itself becomes more
cross-disciplinary the
raw material for change
is there. Right now,
much of that raw
material is stovepiped
in individual data
resources and journals,
and the tool of
discovery across those
resources (with one or
two exceptions) is a
search engine. We
need meaningful and

On one occasion it took 10 minutes before I realized they
were talking about data structures and [ protein
structures. We have come a long way since then.
Computation is an integral part of modern day
biomedical sciences research of any kind and biological
scale — from atom to population. Being an integral part
of scientists’ daily activities will be true for Discovery Informatics, hopefully in much less
than 20 years. In my opinion, the “tipping point” that got bioinformatics started was the
advent of the human genome. Is there such a tipping point to foster in the era of discovery
bioinformatics?

automatic discovery
across resources
through deep search
and analysis.”

In Malcolm Gladwell’s thesis, the tipping point may not be something obvious: the
removal of all graffiti from the New York City Subway System leading to a city renaissance
comes to mind. For Discovery Informatics I would like to think that open science is the
catalyst. This is certainly a major factor in the biomedical sciences. In fact, bioinformatics
careers, including my own, have been built, not from generating our own data, but by using
the free and open data and knowledge generated by others. As this openness further
pervades other disciplines and science itself becomes more cross-disciplinary, the raw
material for change is there. Right now, much of that raw material is stovepiped in
individual data resources and journals, and the tool of discovery across those resources
(with one or two exceptions) is a search engine. We need meaningful and automatic
discovery across resources through deep search and analysis. We need the ability to
simulate living complex systems and share those models and outcomes. We need
professional and non-professional scientists to be part of the process. They can be. One of
the most interesting pandemic modeling studies I have seen recently was performed by a
15-year-old high school student. Empowerment through knowledge can have exciting and
unexpected consequences. To date, the Discovery Informatics Workshop is the most
exciting way forward [ have seen to achieve these outcomes.
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9.2 An Astrophysicist's Perspective, by Alex Szalay

“It is clear that
computers will have
an ever larger role in
our daily lives as
scientists. [...] Some
of our experiments
will be designed by
algorithms, some of
our astronomical
observing strategies
will be optimized by
clever workflows.
Through new
technologies we will
see a much broader

Astronomy has always been a data-driven discipline.
We cannot do experiments with celestial objects; our
only option is to observe them, and then do our best to
interpret these observations. And observe them we did -
for thousands of years astronomers have collected data
which led to an increasingly sophisticated understanding
of gravity, celestial mechanics, then nuclear physics, and
more recently, even particle physics. The most accurate
constraint on the mass of the neutrino, one of most
elusive elementary particles, comes from astrophysical
observations.

Arguably, the data explosion in modern science
began with particle physics and astrophysics. As imaging
detectors have become better and better, our telescopes
have collected ever more data. Astronomers have always
been accustomed to identifying extremely rare objects
among the many typical ones; it still surprised everyone

how rapidly the community has embraced the new
technologies to look at ever more data, by running
complex database queries. The Sloan Digital Sky Survey’s
database has rapidly become the world’s most used

engagement of the
public in deep
science.”

astronomy facility.

It is clear that astronomy is generating some big datasets. At the same time, there is a
“long tail”: for every 100-terabyte dataset there are 100 1-terabyte collections, and
hundreds of thousands of gigabyte-sized data collections. These smaller datasets represent
a much more complex analysis challenge, due to their heterogeneity. The Virtual
Astronomical Observatory is successfully emerging as a grass-roots effort to create an
environment where scientists can combine their own small datasets with the big
collections.

At the same time, so far the community has not found an easy way to either preserve or
extract new knowledge from the aggregation of this “long tail.” It is hard not to see the
potential in bringing together many seemingly unrelated datasets into a single big
collection, in which self-organization by similarities will reveal new, unexpected
connections: consider the success of Facebook or YouTube. These examples show that even
very light metadata tagging can still result in new connections and new meaning.

Looking at the sky is very appealing for a much broader audience than just professional
astronomers. There are more than a hundred thousand amateur astronomers, with quite
serious telescopes in their backyards. GalaxyZoo has attracted several hundred thousand
people who spent millions of hours looking for strange objects at the website. We have seen
the emergence of “Internet Scientists,” who have made several major discoveries in the
GalaxyZoo data. It led us to understand that there is a “long tail” not only in scientific
datasets, but in the scientists themselves.

Over the centuries we have also learned to distinguish detection from discovery.
Computers can help us to “detect” rare objects, yet it takes a human, understanding the
context of the detection at more than one level, to see whether the detection is a truly
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significant new discovery. Many supernovae have been detected by use of various
telescopes over the last century, many of them by amateurs, yet it took Adam Riess and
Brian Schmidt to recognize that the properties of some of the high redshift supernovae
observed in the images taken by the Hubble Space Telescope have a profound implication
about the ultimate fate of our Universe - and this insight led to their Nobel Prize.

It is clear that computers will have an ever larger role in our daily lives as scientists.
Data-driven discoveries will be the norm soon, in many other areas of science beyond
astronomy. Some of our experiments will be designed by algorithms, some of our
astronomical observing strategies will be optimized by clever workflows. Through new
technologies we will see a much broader engagement of the public in deep science. Shortly,
most scientists will be as much at home in data analytics and statistics as in their own
disciplines. By bringing together a rich mix of computer scientists, psychologists, machine
learning experts, physical and life scientists, and sociologists, this workshop has shown the
potential of this emerging brave new world we are about to enter.

10 Recommendations
Written by Yolanda Gil and Haym Hirsh

Critical mass and strategic thinking will only occur in a climate of sustained funding
programs and a strong, synergistic community. The main recommendations from the
workshop participants are:

* Significant investments must be made in basic research in Discovery
Informatics in order to create a critical mass that can make a significant
impact in this area. Basic research in information management, natural language
processing, knowledge-centered data analysis and machine learning, model-based
reasoning, robotics, education frameworks, collaborative systems, social computing
systems, intelligent interfaces, and design is needed. Integrated intelligent
capabilities will be required to address the intricacies of scientific discovery
processes.

* General principles and methodology in Discovery Informatics must be
broadened across domain sciences. The characterization of domains and facets
that impact current Discovery Informatics practices is still not understood. This
would help identify equivalent classes of tasks and problem domains across
sciences. Methodologies to approach new domains, problems, processes, and users
need to be developed. This kind of work cannot be done by domain scientists or
computer scientists or social scientists alone. These disciplines need to come
together on an equal footing to address these challenging and still ill-defined
problems.

* C(Creative mechanisms are needed to break the barriers across fields and
subfields where key expertise to advance Discovery Informatics is widely
scattered. There are pockets of research in the social sciences, the domain sciences,
and computer science, but there is virtually no communication across these
disciplines. Some sciences, notably biology, have strong informatics communities,
but many do not. Within computer science, the research is scattered across many
areas, including machine learning, knowledge technologies and semantic web,
human-computer interaction, natural language, databases, planning, and
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collaboration research. There is also a need to involve social scientists to analyze
science processes, understand requirements, and facilitate adoption of these
technologies.

* Basic research to advance Discovery Informatics needs to be facilitated and
rewarded. Students and young researchers should be trained and supported to
pursue this research area. Discovery Informatics activities will require developing
sustained collaborations with scientists. Traditional computer science criteria for
research merit do not transfer well to Discovery Informatics research. Appropriate
criteria need to be developed to encourage and reward research involving finding
good problems, designing innovative approaches, evaluating and understanding the
impact of those approaches in science practice, and generalizing the results to other
science domains.

* The impact of Discovery Informatics advances over time should be
measurable. We have seen a steady progress in the dimension of scale in
computation in science, moving from terabytes to petabytes to exabytes and
beyond. New dimensions for progress need to be articulated along other complex
aspects of the scientific endeavor. Identifying success stories and significant
advances in this area will help shore up the vision and the potential impact of
pursuing this research agenda.

11 Conclusions

We envision Discovery Informatics providing the impetus for synergistic advances
across multiple sub-areas of information and intelligent systems. Science will provide a
unique testbed for developing integrative models of intelligence that will include model
formulation, automated experimentation, learning, planning, reasoning, dynamic
adaptation, human-computer interaction, and collaboration. It will also lay the groundwork
for the development of the next generation exploratory apparatus, formal theories, and
computational frameworks to not only accelerate discovery but to enable new modes of
discovery to tackle questions that are currently well beyond our reach.

The broader impacts of Discovery Informatics research include the facilitation of
interdisciplinary research at the interface between computer and information sciences and
the various biological, physical, mathematical, health, social sciences and engineering.

These new discovery frameworks will result in enhanced modes of teaching and
learning in science, technology, engineering, and mathematics (STEM) disciplines. The
engagement of citizen scientists with varying levels of expertise and ability in scientific
research will transform the scope and reach of science research in ways otherwise not
possible.

Collectively, these activities are likely to not only fundamentally transform the practice
of science across all disciplines, but also contribute to multiple areas of national priority
such as healthcare, security, and sustainability, with significant impact on national
competitiveness.

Discovery Informatics research has the potential to transform the scientific endeavor,
and bring it to realms that would otherwise not be reachable.
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